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Synchronization with positive conditional Lyapunov exponents
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Synchronization of chaotic systems may occur only when the largest conditional Lyapunov exponent of the
driven system is negative. The synchronization with positive conditional Lyapunov exponents reported in a
recent papefPhys. Rev. B56, 2272(1997] is a combined result of the contracting region of the system and
the finite precision in computer simulatiof$1063-651X98)05910-§

PACS numbes): 05.45+b

Sensitivity to initial conditions is a generic feature of cha- examined such synchronization phenomenon, revealing that
otic dynamical systems. Two chaotic orbits, starting fromit is yet another example of round-off induced phenomenon.
slightly different initial points in state space, separate expo- In Ref. [13], Shuai, Wong, and Cheng studied a driven
nentially with time, and become totally uncorrelated. As aone-way coupled map lattice
result, independent identical chaotic systems cannot synchro-
nize with each other. The sensitivity is quantitatively de-YitT D =1=)T(yi()+ efyi-1(1))
scribed by positive Lyapunov exponé&tin the Lyapunov (1) =xq(t) 7
exponent spectrum of the chaotic system. YN+ RN

However, chaotic systems linked by a common signal cafyherex,(t) is a hyperchaotic signal from a one-way coupled
synchronize with each other. Several cases could be distirﬁng lattice
guished. In the first case, a replica subsystem driven by cha-

(i=1,..N), (1)

otic signals of the chaotic system can synchronize identically Xo(t+1)=(1—€g)f(Xo(t))+ €of (X1(1)), 3)

with the drive system[1-5], if the largest conditional

Lyapunov is negative. This is referred to @entical syn- Xi(t+1)=(1—e)f(xi(t))+ ef(x;1(t)) (i=1,...N),

chronization 4)
Second, a driven system, which is not a replica of the

drive system, may not achieve identical synchronization, but XN+ 1(8) =Xo(1). ®)

a generalized synchronizatiof6—8§|, if the largest condi- The chaotic map is the well-known logistic ma(x)
tional Lyapunov exponent is negative. Two identical sys—_4x(1_x) and e.=0.01
o 0_ . .

tems, driven by the same signal, thus may come to the same As in Ref.[13], the conditional Lyapunov exponents of
final state due to the negative largest conditional LyapunO\{he driven system’ are

exponent.

Lyapunov exponents are also employed to characterize 1T
the behavior of random dynamical systef@§ the system is Ni=In(1—e)+ lim = >, In|f’(y;(1)]. (6)
chaotic(nonchaoti¢ when the largest Lyapunov exponent is T 1 =1

positive (negative. The sensitivity of a chaotic system may ) .

also be suppressed by noise, and identical chaotic systems L€t us study the simplest case Nf=1. The conditional
subjected to common noise can synchronize with each othekyapunov exponent as a function efs shown in Fig. 1. To
Maritan and Banavaf10] studied the behavior of noise- detect the behavior of synchronization, 100 performances

driven logistic maps, and reported synchronization phenom-

enon. It turned out that the observed synchronization was an 1.0 - p—
outcome of finite precision in numerical simulatigrig,12,
while the Lyapunov exponent of the noisy logistic map is 0.5 ]
positive[11].

Very recently, Shuai, Wong, and Chefitg] claimed that
synchronization can be achieved with positive conditional 0.0
Lyapunov exponents. In a one-way coupled map lattice, they
observed, through computer simulations, synchronization of -05 — N
spatiotemporal chaos with many positive components in the I —P
conditional Lyapunov exponent spectrum. Based on these 1 . . .
results, they drew the conclusion that the conditional ~1.0 ' ' ' '

' 01 02 03 04 05 06

Lyapunov exponents cannot be used as a criterion for syn-
chronous chaotic systems.

Whether such a claim is true is of great importance for FIG. 1. Conditional Lyapunov exponeRj and synchronization
our understanding of synchronization. In this paper, we reratio P as functions ofe.
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FIG. 2. The time series of the differeneét) proceeding synchronization in simulations with single, double, and quadrupole precisions.

(a) e=0.200, SP(b) e=0.335, SP(c) e=0.52, SN.

with random initial conditions are carried out for eaeh
Synchronization occurs when andx, become numerically
identical for the finite precision in simulatior{double pre-
cision. P=M/100, whereM is the number of simulations in
which synchronization occurs within’s10’ iterations, is es-
timated as a function ot, as shown in Fig. 1. It can be

2(b), respectively. For comparison, an example of synchro-
nization with negative conditional Lyapunov exponési)
ate=0.520(\ ;= —0.041) is illustrated in Fig. ). Note the
different scales for the different precisions useft) dis-
plays an intermittent behavior before reaching SP. SP occurs
somewhat abruptly, whege(t) drops lower than the preci-

detected that synchronization with a positive Lyapunov exsion of the computer. The tim€ needed for SP to occur is

ponent (SP occurs in several regions. We will take
=0.200 and 0.335 as examples, as pointed out in [Ré&].

much longer for quadrupole precision than that for single and
double precisions. As for SNg(t) continues its trend of

Is SP a true physical phenomenon or an artifact of finitedecrease when higher precision is employed in the simula-
precision in computer simulations? In the following, differ- tion. It is plausible to imagine that, for SP, the intermittence
ent precision formatgsingle, double, and quadruple preci- of e(t) will continue indefinitely for infinite precision, while,
siong are employed in the simulations. First, the differencefor SN, e(t) will approach 0. So the physical process of SP is
e(t) =|y.(t) —x.(t)| preceding the synchronized state is ex-an intermittence, withke(t) becoming very small and enlarg-
amined for simulations with different precisions but the sameng to the size of the chaotic attractor alternately.
random initial conditions. The results foe=0.200(\ The differencee(t) is actually not zero even beyond the
=0.105) and 0.335(;=0.025) are shown in Figs(&® and precision of the computer. In the following simulation with
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tial increase ofT, with L proves that synchronization can
never occur with infinite precision. The behavior of SN is
greatly different, wherel, follows a linear dependence on
L, T,~BL, as seen from the result a¢f=0.52 displaced
with a linear-linear plot in Fig. é). The reason is that, ap-
proximately,e(t) decreases exponentially with time, so that
10 " ~exp(\,T,), resulting inB=—In10/\;. B=56.2 ate
=0.520 is in good agreement with the slope 58.5 of the solid
line in Fig. 4b).

Why then can SP be observed in numerical simulations
even within thousands of iterations? The origin is that there
are contracting regions in a mag, C={x,y||f(x)
—f(y)|<1}. Two orbits in a contracting region come closer
to each other at the next step. For the system studied above,
the contracting region is 2[1/4(1-¢€)]<x;+y;<1
+[1/4(1—€)]. The strip neaxx,+y;=1 has the strongest
contracting rate. The distribution &f +y; is calculated with
10’ iterations to examine the relationship between SP@nd
As seen from the results @f=0.200 and 0.335 in Fig.(8),

the distribution fore=0.200 has very high peaks in the con-
tracting region, and a lower peak fa&r=0.335. Such a
greater frequency of access to the contracting regioa at
=0.200 makese(t) drops to a much smaller value more
frequently than ak=0.335(see Fig. 3, which accounts for
the result that SP is observed &t 0.200 with much fewer
quadrupole precision, when the states of the systems are nijerations than that a¢=0.335. However, the evolution of
merically identical(SP), a perturbatior¢ e (— 10,1030 the differencee(t) is a combined result of local stability and
is added to the drive signaly(t) of systemy at the next instability. The finite-time Lyapunov exponefit4]
iteration, under the constrain<Oxy(t) + ¢<1. Such a tiny
perturbation can totally destroy the synchronization behavior m
when)\ >0, as seen from Figs(& and 3b) for the results )\(m)zi 2 In|f’ (y,(t)|
of €=0.200 and 0.335, respectively, because the tiny differ- m {1 Y1
ence can be amplified to the order o®Idue to the positive
conditional Lyapunov. While for SNe(t) continues to de-
crease after the impulsive perturbations, and the level of difmeasures the average expansion or contraction rai@ in
ference is the order of 0% Such a dramatic difference steps. The distributions of(™ (m=70) for e=0.200 and
between the behavior of SP and SN shows that a negativ@335 are illustrated in Fig.(b). A pronounced tail to-1.0
conditional Lyapunov is a necessary condition for physicalat e=0.200 means that the difference shrinks by a factor of
synchronization. e %=4x 103 in some 70 successive iterations. The nega-
To demonstrate further that synchronization cannot bdive tails thus plays an important role in the observation of
achieved physically with a positive conditional Lyapunov SP. It also explains the fact that SP more easily occues at
exponent, the average synchronization timgis evaluated =0.200 with a larger positive conditional Lyapunov expo-
for different precisions with 100 random initial conditions. nent \ =0.105) than at=0.335 (\=0.025). The distribu-
The results for SRe=0.200 and 0.335are displaced with a tions of A\(™ also reflects the true dynamics of SP: the dif-
linear-log plot in Fig. 4a). The three points lies almost on a ferencee(t) can be very small in a period of time, and it will
straight line, meaning that,~exp(AL), whereL is the num-  be amplified in some other period of time because temporal
ber of significant digits of the finite precision. An exponen- separation dominates, thus resulting in an intermittent dy-

FIG. 3. The time series of the differeneét) under impulsive
perturbations betweer 10~ 3% and 10 % in simulations with quad-
rupole precision. The initial conditions are the same as Fidga)2.
€=0.200, SP(b) €=0.335, SP(c) e=0.52, SN.
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FIG. 4. Average synchronization tinTe, as a function of precision in simulations=7, 16, and 31 for single, double, and quadrupole
precisions, respectively. Each solid line links the first and last point of each data)dghear-log plots for SP(b) A linear, linear plot for

SN.
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FIG. 5. (a) Normalized histograms of;+y,. (b) Normalized histograms of a finite-time Lyapunov exponent.

namics. So the finite-time Lyapunov exponent gives a more In conclusion, synchronization with positive conditional
convincing account for the occurrence of SP in simulationsLyapunov exponents in computer simulations is a roundoff
Based on the above analysis of the simplest cashl of induced phenomenon. The physical dynamics of SP is an
=1, the SP observed in computer simulations is a combinaintermittence. One can expect to observe SP easily in com-
tion of two factors: the shift of the state of the chaotic systemputer simulations in such systems with large contracting re-
to the contracting region, and the finite precision in numeri-gions, and the couplings have the effect of shifting the state
cal simulations. For the case df>1, SP is observed for to the contracting regions so that the finite-time Lyapunov
similar reasons. The driven system is coupled in a cascadeas a significant tail of negative values. A negative condi-
way Xy—Xy_1—--—X, and synchronization can only oc- tional Lyapunov exponent is a necessary condition for syn-
cur for the first severaN; nodes if all theN,; conditional ~ Cchronizing chaotic systems.
Lyapunov exponents\y,An-1,"*"An-n,+1 are negative. This work was supported in part by research Grant No.

Physical synchronization of all the lattices can only occurRP960689 at the National University of Singapore. C.Z. was
when all the conditional Lyapunov exponents are negative.supported by NSTB.
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