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Synchronization with positive conditional Lyapunov exponents
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Synchronization of chaotic systems may occur only when the largest conditional Lyapunov exponent of the
driven system is negative. The synchronization with positive conditional Lyapunov exponents reported in a
recent paper@Phys. Rev. E56, 2272~1997!# is a combined result of the contracting region of the system and
the finite precision in computer simulations.@S1063-651X~98!05910-8#

PACS number~s!: 05.45.1b
a-
m

po
a

h
e

ca
st
ch
al

th
bu

s
am
no

riz

is
y
te
h
-
m

s

is

na
he

th
e
na
y

fo
re

that
on.
en

ed

f

ces
Sensitivity to initial conditions is a generic feature of ch
otic dynamical systems. Two chaotic orbits, starting fro
slightly different initial points in state space, separate ex
nentially with time, and become totally uncorrelated. As
result, independent identical chaotic systems cannot sync
nize with each other. The sensitivity is quantitatively d
scribed by positive Lyapunov exponent~s! in the Lyapunov
exponent spectrum of the chaotic system.

However, chaotic systems linked by a common signal
synchronize with each other. Several cases could be di
guished. In the first case, a replica subsystem driven by
otic signals of the chaotic system can synchronize identic
with the drive system@1–5#, if the largest conditional
Lyapunov is negative. This is referred to asidentical syn-
chronization.

Second, a driven system, which is not a replica of
drive system, may not achieve identical synchronization,
a generalized synchronization@6–8#, if the largest condi-
tional Lyapunov exponent is negative. Two identical sy
tems, driven by the same signal, thus may come to the s
final state due to the negative largest conditional Lyapu
exponent.

Lyapunov exponents are also employed to characte
the behavior of random dynamical systems@9#: the system is
chaotic~nonchaotic! when the largest Lyapunov exponent
positive ~negative!. The sensitivity of a chaotic system ma
also be suppressed by noise, and identical chaotic sys
subjected to common noise can synchronize with each ot
Maritan and Banavar@10# studied the behavior of noise
driven logistic maps, and reported synchronization pheno
enon. It turned out that the observed synchronization wa
outcome of finite precision in numerical simulations@11,12#,
while the Lyapunov exponent of the noisy logistic map
positive @11#.

Very recently, Shuai, Wong, and Cheng@13# claimed that
synchronization can be achieved with positive conditio
Lyapunov exponents. In a one-way coupled map lattice, t
observed, through computer simulations, synchronization
spatiotemporal chaos with many positive components in
conditional Lyapunov exponent spectrum. Based on th
results, they drew the conclusion that the conditio
Lyapunov exponents cannot be used as a criterion for s
chronous chaotic systems.

Whether such a claim is true is of great importance
our understanding of synchronization. In this paper, we
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examined such synchronization phenomenon, revealing
it is yet another example of round-off induced phenomen

In Ref. @13#, Shuai, Wong, and Cheng studied a driv
one-way coupled map lattice

yi~ t11!5~12e! f „yi~ t !…1e f „yi 11~ t !… ~ i 51,...,N!, ~1!

yN11~ t !5x0~ t !, ~2!

wherex0(t) is a hyperchaotic signal from a one-way coupl
ring lattice

x0~ t11!5~12e0! f „x0~ t !…1e0f „x1~ t !…, ~3!

xi~ t11!5~12e! f „xi~ t !…1e f „xi 11~ t !… ~ i 51,...,N!,
~4!

xN11~ t !5x0~ t !. ~5!

The chaotic map is the well-known logistic mapf (x)
54x(12x) ande050.01.

As in Ref. @13#, the conditional Lyapunov exponents o
the driven system are

l i5 ln~12e!1 lim
T→`

1

T (
t51

T

lnu f 8„yi~ t !…u. ~6!

Let us study the simplest case ofN51. The conditional
Lyapunov exponent as a function ofe is shown in Fig. 1. To
detect the behavior of synchronization, 100 performan

FIG. 1. Conditional Lyapunov exponentl1 and synchronization
ratio P as functions ofe.
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FIG. 2. The time series of the differencee(t) proceeding synchronization in simulations with single, double, and quadrupole preci
~a! e50.200, SP.~b! e50.335, SP.~c! e50.52, SN.
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with random initial conditions are carried out for eache.
Synchronization occurs wheny1 andx1 become numerically
identical for the finite precision in simulations~double pre-
cision!. P5M /100, whereM is the number of simulations in
which synchronization occurs within 53107 iterations, is es-
timated as a function ofe, as shown in Fig. 1. It can be
detected that synchronization with a positive Lyapunov
ponent ~SP! occurs in several regions. We will takee
50.200 and 0.335 as examples, as pointed out in Ref.@13#.

Is SP a true physical phenomenon or an artifact of fin
precision in computer simulations? In the following, diffe
ent precision formats~single, double, and quadruple prec
sions! are employed in the simulations. First, the differen
e(t)5uy1(t)2x1(t)u preceding the synchronized state is e
amined for simulations with different precisions but the sa
random initial conditions. The results fore50.200(l1
50.105) and 0.335(l150.025) are shown in Figs. 2~a! and
-

e

-
e

2~b!, respectively. For comparison, an example of synch
nization with negative conditional Lyapunov exponent~SN!
at e50.520(l1520.041) is illustrated in Fig. 2~c!. Note the
different scales for the different precisions used.e(t) dis-
plays an intermittent behavior before reaching SP. SP oc
somewhat abruptly, whene(t) drops lower than the preci
sion of the computer. The timeT needed for SP to occur i
much longer for quadrupole precision than that for single a
double precisions. As for SN,e(t) continues its trend of
decrease when higher precision is employed in the sim
tion. It is plausible to imagine that, for SP, the intermitten
of e(t) will continue indefinitely for infinite precision, while
for SN,e(t) will approach 0. So the physical process of SP
an intermittence, withe(t) becoming very small and enlarg
ing to the size of the chaotic attractor alternately.

The differencee(t) is actually not zero even beyond th
precision of the computer. In the following simulation wit
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quadrupole precision, when the states of the systems are
merically identical~SP!, a perturbationjP(210230,10230)
is added to the drive signalx0(t) of systemy at the next
iteration, under the constrain 0,x0(t)1j,1. Such a tiny
perturbation can totally destroy the synchronization beha
whenl1.0, as seen from Figs. 3~a! and 3~b! for the results
of e50.200 and 0.335, respectively, because the tiny dif
ence can be amplified to the order of 100 due to the positive
conditional Lyapunov. While for SN,e(t) continues to de-
crease after the impulsive perturbations, and the level of
ference is the order of 10230. Such a dramatic differenc
between the behavior of SP and SN shows that a nega
conditional Lyapunov is a necessary condition for physi
synchronization.

To demonstrate further that synchronization cannot
achieved physically with a positive conditional Lyapun
exponent, the average synchronization timeTa is evaluated
for different precisions with 100 random initial condition
The results for SP~e50.200 and 0.335! are displaced with a
linear-log plot in Fig. 4~a!. The three points lies almost on
straight line, meaning thatTa;exp(AL), whereL is the num-
ber of significant digits of the finite precision. An expone

FIG. 3. The time series of the differencee(t) under impulsive
perturbations between210230 and 10230 in simulations with quad-
rupole precision. The initial conditions are the same as Fig. 2.~a!
e50.200, SP.~b! e50.335, SP.~c! e50.52, SN.
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tial increase ofTa with L proves that synchronization ca
never occur with infinite precision. The behavior of SN
greatly different, whereTa follows a linear dependence o
L, Ta;BL, as seen from the result ofe50.52 displaced
with a linear-linear plot in Fig. 4~b!. The reason is that, ap
proximately,e(t) decreases exponentially with time, so th
102L;exp(l1Ta), resulting inB52 ln10/l1 . B556.2 ate
50.520 is in good agreement with the slope 58.5 of the so
line in Fig. 4~b!.

Why then can SP be observed in numerical simulatio
even within thousands of iterations? The origin is that th
are contracting regions in a mapf , C5$x,yuu f (x)
2 f (y)u,1%. Two orbits in a contracting region come clos
to each other at the next step. For the system studied ab
the contracting region is 12 @1/4(12e)#,x11y1,1
1 @1/4(12e)#. The strip nearx11y151 has the stronges
contracting rate. The distribution ofx11y1 is calculated with
107 iterations to examine the relationship between SP andC.
As seen from the results ofe50.200 and 0.335 in Fig. 5~a!,
the distribution fore50.200 has very high peaks in the co
tracting region, and a lower peak fore50.335. Such a
greater frequency of access to the contracting region ae
50.200 makese(t) drops to a much smaller value mor
frequently than ate50.335~see Fig. 3!, which accounts for
the result that SP is observed ate50.200 with much fewer
iterations than that ate50.335. However, the evolution o
the differencee(t) is a combined result of local stability an
instability. The finite-time Lyapunov exponent@14#

l~m!5
1

m (
t51

m

lnu f 8„y1~ t !…u ~7!

measures the average expansion or contraction rate im
steps. The distributions ofl (m) (m570) for e50.200 and
0.335 are illustrated in Fig. 5~b!. A pronounced tail to21.0
at e50.200 means that the difference shrinks by a factor
e270>4310231 in some 70 successive iterations. The neg
tive tails thus plays an important role in the observation
SP. It also explains the fact that SP more easily occurse
50.200 with a larger positive conditional Lyapunov exp
nent (l50.105) than ate50.335 (l50.025). The distribu-
tions of l (m) also reflects the true dynamics of SP: the d
ferencee(t) can be very small in a period of time, and it wi
be amplified in some other period of time because temp
separation dominates, thus resulting in an intermittent
le
FIG. 4. Average synchronization timeTa as a function of precision in simulations.L57, 16, and 31 for single, double, and quadrupo
precisions, respectively. Each solid line links the first and last point of each data set.~a! Linear-log plots for SP.~b! A linear, linear plot for
SN.
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FIG. 5. ~a! Normalized histograms ofx11y1 . ~b! Normalized histograms of a finite-time Lyapunov exponent.
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namics. So the finite-time Lyapunov exponent gives a m
convincing account for the occurrence of SP in simulatio

Based on the above analysis of the simplest case oN
51, the SP observed in computer simulations is a comb
tion of two factors: the shift of the state of the chaotic syst
to the contracting region, and the finite precision in nume
cal simulations. For the case ofN.1, SP is observed fo
similar reasons. The driven system is coupled in a casc
way xN→xN21→¯→x , and synchronization can only oc
cur for the first severalN1 nodes if all theN1 conditional
Lyapunov exponentslN ,lN21 ,¯lN2N111 are negative.
Physical synchronization of all the lattices can only occ
when all the conditional Lyapunov exponents are negativ
v.

s.
e
.

a-

i-

de

r
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In conclusion, synchronization with positive condition
Lyapunov exponents in computer simulations is a round
induced phenomenon. The physical dynamics of SP is
intermittence. One can expect to observe SP easily in c
puter simulations in such systems with large contracting
gions, and the couplings have the effect of shifting the st
to the contracting regions so that the finite-time Lyapun
has a significant tail of negative values. A negative con
tional Lyapunov exponent is a necessary condition for s
chronizing chaotic systems.
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